Pruned lazy learning models for time series prediction

نویسندگان

  • Antti Sorjamaa
  • Amaury Lendasse
  • Michel Verleysen
چکیده

This paper presents two improvements of Lazy Learning. Both methods include input selection and are applied to long-term prediction of time series. First method is based on an iterative pruning of the inputs and the second one is performing a brute force search in the possible set of inputs using a k-NN approximator. Two benchmarks are used to illustrate the efficiency of these two methods: the Santa Fe A time series and the CATS Benchmark time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning

Ozone and PM10 constitute the major concern for air quality of Milan. This paper addresses the problem of the prediction of such two pollutants, using to this end several statistical approaches. In particular, feed-forward neural networks (FFNNs), currently recognized as state-of-the-art approach for statistical prediction of air quality, are compared with two alternative approaches derived fro...

متن کامل

Prediction of daily precipitation of Sardasht Station using lazy algorithms and tree models

Due to the heterogeneous distribution of precipitation, predicting its occurrence is one of the primary and basic solutions to prevent possible disasters and damages caused by them. Considering the high amount of precipitation in Sardasht County, the people of this city turning to agriculture in recent years and not using classification models in the studied station, it is necessary to predict ...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

OPELM and OPKNN in long-term prediction of time series using projected input data

Long-term time series prediction is a difficult task. This is due to accumulation of errors and inherent uncertainties of a long-term prediction, which leads to deteriorated estimates of the future instances. In order to make accurate predictions, this paper presents a methodology that uses input processing before building the model. Input processing is a necessary step due to the curse of dime...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005